The development and evaluation of a nursing information system
for caring clinical in-patient

Mei-Hua Wang (1st Affiliation)
Graduate Institute of Medical Informatics
Taipei Medical University
Taipei, Taiwan, R.O.C.

Yvonne Yu-Wen Fang (2nd Affiliation)
Department of Nursing
Hsin-Sheng College of Medical Care and Management
Taoyuan, Taiwan, R.O.C.

Shu-Fen Chen (3rd Affiliation)
Department of Nursing
Far Eastern Memorial Hospital
Taipei, Taiwan, R.O.C.

Chien-Tsai Liu (Corresponding,*
Graduate Institute of Medical Informatics
Taipei Medical University
Taipei, Taiwan, R.O.C.

Abstract—Purpose: The research aimed to develop a
nursing information system in order to simplify the
admission procedure for caring clinical in-patient, enhance
the efficiency of medical information documentation.
Therefore, by correctly delivering patients’ health records,
and providing continues care, patient safety and care quality
would be effectively improved.

Methods: The study method was to apply Spiral Model
development system to compose a nursing information team.
By using strategies of data collection, working environment
observation, applying use-case modeling, and conferences
of Joint Application Design (JAD) to complete the system
requirement analysis and design. The Admission Care
Management Information System (ACMIS) mainly included:
(1) admission nursing management information system. (2)
inter-shift meeting information management system. (3) the
linkage of drug management system and physical
examination record system. The framework contained
qualitative and quantitative components that provided both
formative and summative elements of the evaluation.
System evaluation was to apply information success model,
and developed questionnaire of consisting nurses’
acceptance and satisfaction. The results of a total 309
questionnaires were: users’ satisfaction, the perceived self
involvement, age and information quality were positively to
personal and organizational effectiveness.

(65.3% effectiveness = 0.771 + 0.550 × users’ satisfaction
+ 0.238 × Nurses’involvement + 0.110 × age + 0.114 × NIS quality).

According to the results of this study, the Admission
Care Management Information System was practical to
simplifying clinic working procedure and effective in
communicating and documenting admission medical
information.

key words: admission care ; in-patient ; nursing
information system

I. INTRODUCTION

Nursing information systems (NIS) are computer systems
that manage clinical data from a variety of healthcare
environments, and made available in a timely and orderly
fashion to aid nurses in improving patient care. There has
been rapid growth and expectations of health care
information systems and technology in health care settings.
The study’s purpose is to develop and evaluate the nursing
information system to enhance for admission in-patients
care and patients’ safety.

A. Literature Review

The spiral model was defined by Barry Boehm in his
1988 article "A Spiral Model of Software Development and
Enhancement". This model was not the first model to
discuss iterative development, but it was the first model to
explain why the iteration matters. As originally envisioned,
the iterations were typically 6 months to 2 years long. Each
phase starts with a design goal and ends with the client (who
may be internal) reviewing the progress thus far. Analysis
and engineering efforts are applied at each phase of the
project, with an eye toward the end goal of the project. The
steps in the spiral model iteration can be generalized as
follows:

1. The new system requirements are defined in as
 much detail as possible. This usually involves
 interviewing a number of users representing all the
 external or internal users and other aspects of the
 existing system.

2. A preliminary design is created for the new system.
 This phase is the most important part of "Spiral
 Model". In this phase all possible (and available)
 alternatives, which can help in developing a cost
 effective project are analyzed and strategies are
decided to use them. This phase has been added
specially in order to identify and resolve all the
possible risks in the project development. If risks
indicate any kind of uncertainty in requirements,
prototyping may be used to proceed with the
available data and find out possible solution in
order to deal with the potential changes in the requirements.

3. A first prototype of the new system is constructed from the preliminary design. This is usually a scaled-down system, and represents an approximation of the characteristics of the final product.

4. A second prototype is evolved by a fourfold procedure:
 (1) evaluating the first prototype in terms of its strengths, weaknesses, and risks;
 (2) defining the requirements of the second prototype;
 (3) planning and designing the second prototype;
 (4) constructing and testing the second prototype.

II. RESEARCH DESIGN AND METHODS

A. Design and Methods

The study method was to apply Spiral Model development system to compose a nursing information team. By using strategies of data collection, working environment observation, applying use-case modeling, and conferences of Joint Application Design (JAD) to complete the system requirement analysis and design. The Admission Care Management Information System (ACMIS) mainly included: (1) admission nursing management information system. (2) inter-shift meeting information management system. (3) the linkage of drug management system and physical examination record system. The framework contained qualitative and quantitative components that provided both formative and summative elements of the evaluation. System evaluation was to apply information success model, and developed questionnaire of consisting nurses’ acceptance and satisfaction.

B. Some of the features that are provided by Nursing Information Systems include:

- Patient Charting: A patient’s vital signs, admission and nursing assessments, care plan and nursing notes can be entered into the system either as structured or free text. These are the stored in a central repository and retrieved when needed.
- Staff Schedules: Nurse can self schedule their shifts using scheduling rules provided in shift modules. The shifts can later be confirmed or changed by a scheduling coordinator or manager. Shift modules are designed to handle absences, overtime, staffing levels and cost-effective staffing.
- Clinical Data Integration: Here clinical information from all the disciplines can be retrieved, viewed and analysis nursing staff and then integrated into a patient’s care plan.
- Decision Support: Decision support module can be added to Nursing Information Systems, and they provide prompts and reminders, along with guides to disease linkages between signs/symptoms, etiologies/related factors and patient populations. Online access to medical resources can also be made available.

III. RESULT

The results of a total 309 questionnaires were: users’ satisfaction, the perceived self involvement, age and information quality were positively to personal and organizational effectiveness. User involvement in questionnaire, the “system quality” showed that \(r = .517, p<.01 \), the “information quality” showed that \(r = .483, p<.01 \), “services quality” \(r = .517, p<.01 \), the “user attitudes” showed that \(r = .523, p<.01 \), the “user satisfaction” showed that \(r = .560, p<.01 \), and “personal /organizational effectiveness” showed that \(r = .638, p<.01 \). User satisfaction and experiences are other areas of interest within nursing literature on Nursing Information Systems evaluation. There are benefits to be enjoyed by implementing Nursing Information Systems and they include:

- Improved workload functionality: Staffing levels and appropriate skill mix per shift can be more easily determined by the shift modules. This leads to less time spent in designing and amending rosters.
- Better care planning: Time spent on care planning is reduced, while the quality of what is recorded is improved. This makes for more complete care plans and more complete assessments and evaluations.
- Better drug administration: Electronically prescribed drugs are more legible, thus making it less likely that drugs would be wrongly administered to patients.

IV. CONCLUSION

The nursing occupation depends on accurate and timely access to appropriate information to perform the great variety of professional activities involved in patient and community care. Nursing information integrates technical knowledge, quality control, and the clinical and administrative documentation of services provided. Nurses need information about available resources, science development, and patient needs for decision-making. Nurses need access to information for program planning, for the operation and supervision of clinical and management interventions and to evaluate the outcomes of care.

The effectiveness and efficiency of nursing can be evaluated by assessing how patient outcomes are affected by nursing practice. Nursing sensitive outcomes refer to observable and measurable changes in the health status or behaviors of patients as a result of nursing actions.
ACKNOWLEDGMENT

We wish to thank the staffs in Far Eastern Memorial Hospital supporting this research and Professor Chien-Tsai Liu for his assistance in the development of this study.

REFERENCES

![Figure 1: DeLone & McLean Process Model](image)

![Figure 2: Waterfall Prototyping Process Model](image)
TABLE 1: INFORMATION SYSTEM SUCCESS MODUL EXPLANATION

<table>
<thead>
<tr>
<th>Model</th>
<th>Dependent variable</th>
<th>Independent variable</th>
<th>R-square</th>
<th>F metage</th>
<th>significance</th>
<th>Durbin-Watson metage</th>
<th>factor measure</th>
<th>significance allowable error</th>
<th>VIF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Transact- SQL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.366</td>
<td>6.854</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.232</td>
<td>4.259</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.233</td>
<td>4.733</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.110</td>
<td>2.087</td>
<td>.038</td>
</tr>
<tr>
<td>Model 2</td>
<td>User satisfaction --- Information quality --- User Attitude</td>
<td>(Transact- SQL)</td>
<td>.649</td>
<td>18.767</td>
<td>.000</td>
<td>2.037</td>
<td>.416</td>
<td>2.578</td>
<td>.010</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.489</td>
<td>9.855</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.262</td>
<td>5.377</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.183</td>
<td>4.332</td>
<td>.000</td>
</tr>
<tr>
<td>Model 3</td>
<td>personal / organizational effectiveness</td>
<td>(Transact- SQL)</td>
<td>.653</td>
<td>5.565</td>
<td>.019</td>
<td>1.852</td>
<td>.771</td>
<td>4.780</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.550</td>
<td>10.674</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.238</td>
<td>5.447</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.110</td>
<td>3.092</td>
<td>.002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.114</td>
<td>2.359</td>
<td>.019</td>
</tr>
</tbody>
</table>

TABLE 2: ANALYSIS OF SYSTEM EVALUATION

<table>
<thead>
<tr>
<th>items</th>
<th>Pre-evaluation</th>
<th>Post-evaluation</th>
<th>Paired-T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>order</td>
</tr>
<tr>
<td>1 System quality</td>
<td>3.19</td>
<td>.625</td>
<td>3</td>
</tr>
<tr>
<td>2 Information quality</td>
<td>3.15</td>
<td>.675</td>
<td>4</td>
</tr>
<tr>
<td>3 Service quality</td>
<td>3.19</td>
<td>.612</td>
<td>2</td>
</tr>
<tr>
<td>4 User involvement</td>
<td>3.30</td>
<td>.593</td>
<td>1</td>
</tr>
<tr>
<td>5 User satisfaction</td>
<td>3.09</td>
<td>.663</td>
<td>5</td>
</tr>
<tr>
<td>6 personal /organizational effectiveness</td>
<td>2.94</td>
<td>.738</td>
<td>6</td>
</tr>
</tbody>
</table>

Explanation: * p<.05 **p<.01
Analysis of User Involvement and Satisfaction

<table>
<thead>
<tr>
<th>Items</th>
<th>Not so great (n=4)</th>
<th>Fair (n=25)</th>
<th>Good (n=157)</th>
<th>Great (n=103)</th>
<th>Excellent (n=17)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>Mean</td>
<td>SD</td>
<td>Mean</td>
</tr>
<tr>
<td>1 System quality</td>
<td>2.25</td>
<td>.957</td>
<td>2.65</td>
<td>.543</td>
<td>3.06</td>
</tr>
<tr>
<td>2 Information quality</td>
<td>2.25</td>
<td>.957</td>
<td>2.68</td>
<td>.734</td>
<td>3.20</td>
</tr>
<tr>
<td>3 Service quality</td>
<td>2.25</td>
<td>.957</td>
<td>2.75</td>
<td>.538</td>
<td>3.23</td>
</tr>
<tr>
<td>4 User involvement</td>
<td>2.00</td>
<td>.707</td>
<td>2.85</td>
<td>.634</td>
<td>3.28</td>
</tr>
<tr>
<td>5 User satisfaction personal/organizational effectiveness</td>
<td>1.25</td>
<td>.500</td>
<td>2.52</td>
<td>.563</td>
<td>3.11</td>
</tr>
<tr>
<td></td>
<td>1.19</td>
<td>.239</td>
<td>2.31</td>
<td>.528</td>
<td>3.06</td>
</tr>
</tbody>
</table>